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Final Report

Air Force Office of Scientific Research Grant AFOSR 78-3602A,B,C,D, entitled
"First Passage Times in Stochastic Differential Equations of Mathematical

Physics and Engineering"

Principal Investigator: Prof. Bernard J. Matkowsky
Department of Engineering Sciences and Applied
Mathematics

The Technological Institute
Northwestern University
Evanston, IL 60201

Under this grant, we supported the successful collaboration between
Professors B. J. Matkowsky, Z. Schuss, and S. Kamin on Singular Perturbation
Methods in Stochastic Differential Equations and Applications to various
scientific disciplines. We made a number of breakthroughs on some fundamental
problems, both in science and in mathematics.

We considered the effects of random (stochastic) perturbations on
bdeterministic dynamical systems, including (i) the effects of noise on
deterministic dynamics (such noise exists in all physical systems), and
(ii) specific physical effects, the details of which are very complicated,
and are modeled as stochastic terms; e.g. (a) the effect of molecular
collisions which causes chemical reactions and (b) the effect of random
thermal vibrations of a crystal lattice which causes diffusion. With the
inclusion of random perturbations, the deterministic differential equations
become stochastic differential equations. The effects of random perturbations
include (i) fluctuations about stable steady state solutions of the deter-
ministic dynamics, and (ii) jumps or transitions from one stable state to
another.

The distribution of fluctuations about stable equilibrium solutions is
given by the Boltzmann distribution p - eETwhere E denotes energy and
T denotes temperature. For fluctuations about stable non-equilibrium solu-

2tions (sq as limit cycles), our results are new. They are of the form
*p - poeW/ where W plays the role of energy, Is a solution of a Hamilton-

Jacobi type equation, which we derive. The fact that such jumps or transitions
occur, can be used as the basis of explanations of various scientific phenomena:
e.g. Ionic conductivity in crystals and chemical reactions. In addition it
can be used as the basis for studying the relative stability of two or more
(ueta)stable states In a multi-stable system.

We Introduced new mathematical methods to compute (i) the distribution
of fluctuations about stable steady state solutions of the deterministic
dynamics, and (ii) the transition rate (jump frequency) from one stable state
to another. The transition rate from a stable state is inversely proportional
to the lifetime of (first passage time from) that state. This allowed us to

* compute the relative stability of a stable state In a system in which there
exist multiple stable states. The state with a longer lifetime is considered
to be more stable.
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The lifetimes of stable equilibrium states of potential systems, is
proportional to the height of the potential barrier which must be overcome,
in order for a transition to occur. For the lifetimes of stable non-equili-
brium states our results are again new. The analog of the barrier height is
a critical value of the function W described abdve, which we compute.

example: The Josephson junction is to be employed as a logical elementI (switch) in the next generation of computers. It has two
stable solutions. (1) - The superconducting solution in
which the current I j~ 0, but the voltage V -0, and (2) -a
solution with both I and V 0 0.

solution (1) with V -0, corresponds to off (or No)
solution (2) with V 0 corresponds to on (or Yes)

To determine the reliability of this element, it is important
p. to know the frequency of jumps due to noise from one solution

to another. Our methods compute such jump frequencies.

Our approach was to characterize the quantities of interest as solutions
of singularity perturbed elliptic boundary value problems, which are
obtained from the stochastic differential equations via the Ito calculus.

We then introduced new perturbation methods to solve the singularity per-
turbed boundary value problems. In addition to computing (explicitly
analytically) the desired quantities, we obtained as a by-product, extensions
of the Method of Averaging, and of the method of Hatched Asymptotic Expansions.

In summary the research produced during the four year period of the *
grant, has been most successful. During that period 20 papers and one
book have been published. They are sunmarized below:
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Book: Theory and Applications of Stochastic Differential Equations, J. Wiley,
T I'O), New York.

Research Papers

1. "The exit problem: a new approach to diffusion across potential barriers,"
SIAM J. Appl. Math., 35 (1979), pp. 604-623.

We consider the problem of a Brownian particle confined in a potential
well of forces, which escapes the potential barrier as the result of
white noise forces acting on it. The problem is characterized by a
difffusion process in a force field and is described by Langevin's
stochastic differential equation. We consider potential wells with many

transition states and compute the expected exit time of the particle
from the well as well as the probability distribution of the exit
points. Our method relates these quantities to the solutions of certain
singularly perturbed elliptic boundary value problems which are solved
asymptotically. Our results are then applied to the calculation of
of chemical reaction rates by considering the breaking of chemical
bonds caused by random molecular collisions, and to the calculation

of the diffusion matrix in crystals by considering random atomic migra-
tion in the period force field of the crystal lattice, caused by
thermal vibration of the lattice.

2. "On elliptic singular perturbation problems with turning points,"
SIAM J. Appl. Math., 10 (1979), pp. 447-455.

The boundary value problem for the elliptic equation cAu + lbtU - 0

is considered in the case that the characteristic curves of the reduced
equation enter the domain and have a singular point inside (turning
point). Assume that there exists a potential function *(x) such that
bi M *x (i-l,2,...,n). It is proved that if -p 0 then the solutions

u,(x) converge to a constant, a formula for which was derived by
atkowsky and Schuss using formal asymptotic expansion.

3. "Eigenvalues of the Fokker-Planck operator and the approach to equilibrium
for diffusion in potential fields," SIAM J. Appl. Math., 40 (1981),
pp. 242-254.

We consider the motion of a Brownian particle in an infinite potential
field. The rate of approach to equilibrium is determined by the second
eigenvalue of the stationary Fokker-Planck operator. The inverse of
this eigenvalue is the expected time for the particle to overcome the
potential barriers on its way to the deepest potential well. The height
of the largest potential barrier is termed the activation energy, and
the eigenvalue is computed asymptotically for large activation energies.
Applications to the calculation of chemical reaction rates and ionic
conductance in crystals are given.



4. "Singular Perturbations, Stochastic Differential Equations and
Applications," in Singular Perturbations and Asymptotics, ed. R. E.
Meyer and S. V. Parter, Academic Press, New York, 1980.

Invited address at the Advanced Seminar on Singular Perturbations

and Asyupto I cs, in honor of W. Wasow, held at the University of
Wisconsin, Hadison, May 1980.

5. "Thermal fluctuations and lifetime of the nonequilibrium state in a
hysteretic Josephson junction," Phys. Rev. B25 (1982), pp. 519-522.

The probability distribution of thermal fluctuations around the finite-
voltage steady state of a hysteretic Josephson Junction, as well as
the transition probability out of that state, are both calculated by
a simple method that promises to be applicable to a wide variety of
nonequilibrium steady-state situations. Our results are in excellent
agreement with those obtained by numerical simulations. Specific
experiments are suggested in order to verify the results for the
Josephson junction.

6. "The mean lifetime of meta-stable states of the DC-SQUID and its I-V
characteristics,".National Bureau of Standards Special Publication
614. Sixth Int'l Conf. on Noise in Physical Systems (1981), 376-380.

The DC-SQUID with small coupling has several types of meta-stable
states and therefore it can be used as a logic element. At a finite
temperature the thermal noise causes spontaneous transitions between
the various states. Hence, the meta-stable states have finite mean
lifetimes. It is of interest to know the dependence of these lifetimes
on the DC-SQUID parameters, on the external driving current I and on
the external magnetic flux 0ex. Here we find this dependence for the
shunted DC-SQUID.

7. "Kramers' diffusion problem and diffusion across characteristic
boundaries," in Theory and Applications of Singular Perturbations,
Conf. Proceedings, Oberwolfach, 1981, pp. 318-345, Ed. W. Eckhaus
and E. M. do Jager, Spring Lectures Notes in Mathematics, No. 942,
(invited address).

8. "Diffusion across characteristic boundaries," SIAM J. Appi. Math., 42
(1982), pp. 822-834.

We consider the motion of a particle acted on by the deterministic
force vector b(x(t)) and perturbed by random forces of white noise type.

Such a particle will leave any bounded domain 9 in finite time. We
consider the case where b is such that ag consists of a trajectory or
trajectories of the system x - b(x(t)). Thus we consider the cases of
an unstable limit cycle and a center. We observe that these problems
are such that b is not derivable from a potential. For each problem
we derive expressions for (i) the mean first passage time to 3f, and
(ii) the probability distribution of exit points on an. Our method
Is to employ the Ito calculus to characterize the quantities (i) and
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(ii) as solutions of singularly perturbed elliptic boundary value
problems, and then to derive asymptotic representations of the solutions
of those problems. The results obtained are new and are of importance
in a variety of applications including the estimation of jump times
(due to noise) from stable periodic solutions to other stable solutions
of the deterministic dynamical system.

9. "A singular perturbation approach to Kramers' diffusion problem," SIAM J.
Appl. Math., 42 (1982), pp. 835-849.

We* consider Kramers' diffusion problem, which seeks to calculate the
rate of escape of a particle from one potential well over a barrier,
to another presumably deeper and therefore more stable well. Though
Kramers introduced the problem as a model for chemical reactions, it

Iapplies to numerous rate processes, including atomic migration and
ionic conductivity in crystals, and transitions due to noise, between
stable states of dynamical systems with multi-stable states, to name
but a few. We propose a new approach, not based on a Fokker-Planck
equation, but rather on the solution of a singularly perturbed boundary
value problem. Specifically, we relate the rate of escape to the first
passage time from the domain of attraction of the stable point corre-
sponding to the first well. The first passage time is then characterized
via the Ito calculus, as a solution of an elliptic partial differential
equation of singular perturbation type. Finally this equation is solved
asymptotically by methods previously developed by the authors. We obtain
some new results on the rate of escape, which reduce to those of Kramers
for the cases he considered, and in addition discuss the validity of the
various results derived by Kramers. Finally, in contrast to other
approaches, our methods readily extend to higher dimensions.

10. "A singular perturbation method for the computation of the mean first
passage time in a nonlinear filter," SIAM J. Appl. Math., 42 (1982),
p. 174-187.

We give a new application of recently developed singular perturbation
methods in the area of mathematical theory of nonlinear filtering.
We consider the phenomenon of cycle slipping in a second order phase-
locked loop (PLL) which serves as demodulator for a random FM message.
We introduce new scaling parameters into the Ito system of stochastic
differential equations describing the PLL, thus identifying the
phenomenon of cycle slipping with Kolmogorov's exit problem. We use
singular perturbation methods to obtain an explicit expression for the
mean time between cycle slips. Furthermore, we sescribe the mechanism
of cycle slips and identify new parameters which determine the probability
of their occurrence.

11. "Dynamical systems driven by small white noise: asymptotic analysis
and applications," survey paper to appear as a chapter in forthcoming
Springer-Verlag book on Singular Perturbations and Asymptotics, ed. by
F. ver Hulat.
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12. "Dif fusion across characteristic boundaries with critical points,"

SIAM J. Appi. Math., 43 (1983).

We consider the problem of the effect of small white noise pertur-
bations on a deterministic dynamical system in the plane with (i) an
asymptotically stable equilibrium point or limit cycle and (1iO an
equilibrium~point surrounded by closed trajectories. The mean exit
time and the distribution of exit points for each problem is determined
by solving singularly perturbed elliptic boundary value problems in
domains with closed characteristic boundaries with critical points.
Uniformly valid asymptotic solutions are constructed for each of theH problems. For the asymptotically stable equilibrium point, the method
of matched asymptotic expansions with the integral condition of
Matkowsky and Schuss is employed. A method of averaging combined with
boundary layer analysis is used for the problem of an equilibrium
point surrounded by closed trajectories. The influence on the solu-
tions, of the critical points on the boundary, is exhibited and
explained. An application to the physical pendulum is given. Finally
our results are shown to be in close agreement with simulations.

Y13. "Thermal and shot noise effects on nonlinear oscillators," to appear
in Annals of New York Academy of Sciences. Proceedings of 5th
Int'l Conf. on Collective Phenomena, Moscow.

14. "on singular perturbation problems with several turning points,"

Indiana Univ. Math. J., 31 (1982), pp. 819-841.

Provides rigorous proofs for the results in reference 1.

* .15. "Lifetime of oscillatory steady states," Phys. Rev. A., 26 (1982),
pp. 2806-2816.

We introduce a method to derive expressions for the distribution p of
large fluctuations about a stable oscillatory steady state and for
the transition rate from that state Into another stable state. Our
method is based on a WKB-type expansion of the solution of the Fokker-Planck
equation. The expression for p has a form similar to the Boltzmann
distribution with the energy replaced by a function W, which is the solu-
tion of a Hamilton-Jacobi-type equation. For the case of small dissi-
pation, a simple analytical approximation to W, in terms of an action
increment, is derived. Our results are employed to predict various
measurable quantities in physical systems. Specifically we consider the
problems of the physical pendulum, the shunted Josephson junction, and
the transport of charge-density-wave excitations.

16. "on the lifetime of a metastable state at low noise," accepted, Physics
Letters (1983).

The mean lifetime of a metastable state of a dynamical system driven
by small white noise is calculated. The vector field of the dynamical

.4 system which need not be deriveable from a potential, Is assumed to
have a vanishing normal component on the boundary of the domain of
attraction of the metastable state.
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17. "Transitions from the equilibrium state of a hysteretic Josephson
junction induced self-generated shot noise," submitted, Phys. Rev.
Letters.

We postulate the existence of self-generated normal current shot noise
due to the long-lived voltage fluctuations in a hysteretic Josephson
junction. the resulting low temperature transition rates out of the
(zero voltage) superconducting state are much larger than those arising
from Johnson noise alone. Excellent agreement with experiments is
then achieved at all temperatures, removing the need to invoke
0mcroscopic quantum tunneling.

18. "Shot noise effect on the nonzero voltage state of the hysteretic
Josephson junction," accepted, Applied Phys. Letters (1983).

We find a non-symmetric distribution of voltage fluctuations about
the nonzero voltage state of a hysteretic Josephson junction when shot
noise effects are included. The positive voltage fluctuations are
found to be more probable than the negative ones. We also find that
the transition rates become larger than those due to Johnson noise only.

19. "Thermal activation from the fluxoid and the voltage states of DC-SQUIDS,"
accepted, J. Applied Physics (1983).

The probability density of thermal fluctuations about different types
of nonequilibrium steady states of a DC-SQUID are evaluated by
generalizing a technique used before for the fluctuations of a single
Josephson junction. Probability densities obtained for both "running"
and "beating" modes are used to calculate thermal activation rates as
well as the various branches of the I-V characteristic. The results
are compared with the experiments of Voss et al. and good agreement is
found.

20. "Asymptotic analysis of the optimal filtering problem for one dimensional
diffusion measured in a low noise channel I," to appear, SIAM J. Appl.
Math.

We consider the problem of filtering a diffusion with nonlinear drift
transmitted through a linear low noise channel. A ray method is used
for the construction of approximate solutions to Kushner's and Zakai's
equations for the normalized and unnormalized conditional probability
density function of the signal. A systematic expansion of the mean
square estimation error is given, the realization of an asymptotic optimal
filter is presented and shown to be one dimensional. Some examples are
worked out and the relation to some recent work of Ben~s and Hijab is
discussed.


